If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-8x=96
We move all terms to the left:
x^2-8x-(96)=0
a = 1; b = -8; c = -96;
Δ = b2-4ac
Δ = -82-4·1·(-96)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{7}}{2*1}=\frac{8-8\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{7}}{2*1}=\frac{8+8\sqrt{7}}{2} $
| 8^3-5x=8^3x-5 | | 3p^2+8p+9=0 | | 0.5b=10 | | 8m=¼ | | 1/6(x+3)+2x=1/5x+2 | | 8m=4m= | | 1/6(x+5)+4x=1/7+6 | | 1/6(x+5)+4x=1/7+6x | | 3+12x=7x+6 | | 10x-27=x+54 | | 2/9x-6=5/8-6/9x | | -1x+1=3-8x | | 2/5=3/c | | 9+12x=3x+9(1+x) | | x-30+2x-120+(1/2)x+15=180 | | -10+7x+24-2x=0 | | 90=2(22+w) | | 6(x+18)-9=3x+12 | | 8/7(x-1)+5=-x+20 | | 4=2x²-30 | | 5(x-6)+19=-2+1x | | F(x)=10x^2-140x+8 | | 91=8(s-65)+35 | | $91=8(s-65)+35 | | 43.2=9x | | F(x)=4x^2+3x+10 | | F(x)=3x^2+18x+9 | | Y=-6a-4 | | F(x)=8x^2+48x+6 | | -2y-6(-8y+3)=8-8(1-y) | | -24x8=48 | | 10z-20=40 |